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Bayesian predictive probability design: theory and practical 
application in a prospective study 

Adam Korczyński1 

Abstract 

In an experiment-based prospective study aiming to determine the efficiency of a treatment, 
the time by which it becomes clear whether a therapy is effective or not is critical. This applies 
specifically to clinical trials and refers to the same extent to both successful and futile 
therapies. This study seeks to answer the question when there is enough evidence allowing 
the trial to be finalised. The key is to find enough statistical signals, working on the smallest 
possible sample, to make a judgment whether to extend, continue or terminate the study. 
The Bayesian predictive design allows drawing conclusions about the prognosis of a study 
considering the actual results.  
The article provides a theoretical background and presents a practical perspective, 
addressing the statistical properties and technical aspects of conducting a trial based on 
a predictive design. Additionally, the sensitivity of the design to the choice of prior 
distribution is discussed. 

Key words: Prospective study analysis, adaptive design, predictive probability design, 
Bayesian statistics. 

1. Bayesian adaptive design - overview 

Bayesian predictive design2 falls within the concept of adaptive design of a clinical 
trial allowing modifications of the trial conduct according to the intermediate results. 
One of the objectives is to end the trial as soon as the final outcome is apparent (George, 
Wang, & Pang, 2016, pp. 366–369). The predictive power within the clinical trial 
settings is described as “having a positive result from a trial based on the currently 
available data” (Heath, et al., 2020, p. 2). In fact, Bayesian design allows assessing 
positive or negative result and therefore the rules of stopping for either futility or 
efficacy. 
                                                           

1  SGH Warsaw School of Economics, Poland. E-mail: akorczy@sgh.waw.pl. ORCID: https://orcid.org/0000-
0002-1533-7197. 

2  An overview of the Bayesian approach including comparison with the frequentist principles can be found 
in (Lesaffre & Lawson, 2012). 
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Additionally, it gives the ability to react to evidence on superior treatment factor 
allowing assignment of new subjects to the best dosing scheme under study. For clinical 
trials various incentives, primarily ethical (Zhou, Liu, Kim, Herbst, & Lee, 2008, p. 2; 
Yin, Chen, & Lee, 2012, p. 220) but also those related to safety, cost and time 
effectiveness (Heath, et al., 2020; Chen, Ibrahim, Lam, Yu, & Zhang, 2011) bring the 
adaptive design approach into the scope of methods attractive for the industry and 
regulatory agencies. In some settings of oncology, the studies require large number of 
patients and years of studies in order to gain the approval (Barker, et al., 2009). 
Therefore, timing and decision making is essential to the drug development. 

The Bayesian design finds its application in non-inferiority trials which are with 
the aim to show similar effectiveness of a novel therapy compared to a standard but 
with additional benefits to patients. If a therapy turns to be inferior then it would ideally 
be stopped early. Clinical practice shows that in oncology interim analysis was limited 
in recent years and based on a review published in 2012 (Heath, et al., 2020, p. 2), only 
36% of 72 non-inferiority oncology trials utilized a formal analysis. 

The Bayesian framework can also be applied to targeted therapy, giving the 
opportunity of accounting for the variation in patients characteristics (biomarker 
profile) when assigning the therapy. An application of targeted therapy in patients with 
advanced non-small cell lung cancer with disease control rate as the primary endpoint 
is outlined in (Zhou, Liu, Kim, Herbst, & Lee, 2008). The disease control rate was 
monitored within the treatment and marker subgroups with the Bayesian design 
deciding about the randomization of patients to treatment arms, according to the 
ongoing assessment of the response. A simulation study showed higher disease control 
rate in the randomized patients in the adaptive design as compared to fixed 
randomization equivalent (Zhou, Liu, Kim, Herbst, & Lee, 2008, p. 11; Yin, Chen, 
& Lee, 2012, p. 231). Similarly, application is to be found in (Barker, et al., 2009) with 
the description of a trial aiming at identifying the biomarker profiles able to predict the 
response for each study treatment. 

Another application is within the basket design comparing the results of the 
treatment in patients with tumors of various types (Simon, Geyer, Subramanian, 
& Roychowdhury, 2016). The goal is to detect the strata in which drug activity suggests 
promising future results, and those which should not be continued as the evidence is 
the opposite. In randomized settings adaptive design allows assigning patients to more 
promising therapies, and such a schedule can already be applied to phase II trials (Yin, 
Chen, & Lee, 2012; Harrington & Parmigiani, 2016). The drawback is though that 
adaptive design in randomized setting would require larger sample due to unbalanced 
patient allocation (Yin, Chen, & Lee, 2012, p. 234). 

With appropriate design of the trial the ability to determine the final outcome could 
be very high. An overview of the sensitivity of the Bayesian predictive probability design 
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for non-informative priors is provided in (Mitchell, 2018). The conclusion from the 
study was that in about 93% simulated trials, the interim decision was in agreement 
with the final outcome.  

Bayesian design offers a straightforward setting for implementing prior knowledge 
into the estimation. The gain from using the prior knowledge is in the possibility to 
reduce the final sample size ensuring sufficient power to detect the effect (Chen, 
Ibrahim, Lam, Yu, & Zhang, 2011, p. 1167). In the referenced study, the reduction of 
the sample size between an informative and non-informative approach was from 
n=1480 to 1080 patients. This finding would not be however applicable to randomized 
trials with adaptive design, as then the distribution of patients over the treatment arm 
is affected by the outcome and this introduces the lack of balance between the arms. 

The following sections describe and discuss the special case of a Bayesian design 
with predictive probabilities at the end of the trial using a binary endpoint. An example 
application is provided for a response rate endpoint. 

2. Theoretical background of Bayesian predictive probability for binary 
outcome 

The parameter of interest is the number of responses which can be translated into 
a response rate π. The objective is to predict the final response rate observed when the 
maximum sample size is reached, based on the initial assumption on the distribution 
of potential response rates and the actual outcome at a given time point. Within 
Bayesian settings it requires defining the prior distribution f(θ), which reflects the 
primary expectation on the response rate and the likelihood L(y1, y2, …, yn| θ), which 
adjusts the initial belief by the empirical evidence. The posterior distribution of the 
response rate is derived using the Bayesian rule (Lesaffre & Lawson, 2012, p. 23): 
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The response rate can be seen as a probability of an individual success in a Bernoulli 
experiment π=P(Y=1). The likelihood function for a sample of Bernoulli random 
variables y1, y2, …, yn is given by the formula (Jóźwiak & Podgórski, 2009, pp. 193-4.): 
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It follows that the number of responses 𝑅 ൌ ∑ 𝑦௜
௡
௜ୀଵ  is a random variable with 

a binomial distribution defined by the probability (Lesaffre & Lawson, 2012, p. 25): 
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The initial belief on the response rate can be expressed by the beta distribution, 
which has the following probability density function (Bolstad, 2007, p. 127): 
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where Γሺ𝑠ሻ ൌ ׬ 𝑡௦ିଵ𝑒ି௧𝑑𝑡
ஶ
଴  , s>0 is the Gamma function, and a>0 and b>0. 

The beta distribution associates probability with any value between 0 and 1 which 
covers all possible response rates. If there is no strong evidence for any particular set of 
values one can use Beta prior with parameters a=0.5 and b=0.5, which gives similar 
probability for the values in the central region of π distribution and with somewhat 
more probable observation of extreme values (see Figure 1). Alternative formulation 
with a=1 and b=1 would result in uniform distribution assuming the same probability 
for all the possible values of the parameter of interest.  

 
Figure 1:  Beta probability density function with parameters a=0.5 and b=0.5 

Source: own study. 
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The posterior distribution of the response rate is derived based on (1) using (2) and 
(4) (Lesaffre & Lawson, 2012, pp. 24-30)3: 
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which is a Beta distribution with parameters a`=a+r and b`=b+n-r. The observed 
number of responses corrects the prior belief about the response rate distribution. 

For example, if we observe r=10 responses in a sample of n=50 subjects, the prior 
beta distribution with parameters a=0.5 and b=0.5, would give the beta posterior with 
a`=10.5 and b`=40.5 shown in Figure 2. The empirical response rate equals π=0.2, and 
we can clearly see that the posterior distribution is heavily concentrated around that 
value.  

 
Figure 2:  Beta prior distribution with a=0.5 and b=0.5 and posterior with a’=10.5 and b’=40.5 

Source: own study. 

The properties of Bayesian estimate of the response rate allows to make the 
judgement on the final outcome based on the actual number of responses at a given 
time point. We estimate the probability of any future outcome using posterior 
predictive distribution.  
                                                           

3  Derivation of the posterior distribution of the response rate is included in the Appendix. 
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Firstly, let us note that the posterior distribution f(θ| y1, y2, …, yn) is our belief on 
the probability of potential values of θ given data. The posterior probability mass can 
be used to assess the future responses. The distribution of the future responses for 
continuous variable given data is  (Lesaffre & Lawson, 2012, p. 53): 
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In the settings of the response rate, the predictive posterior distribution given r0 
responses in n0 subjects, defines the probability of observing any possible number of 
responses in the remaining subjects m=n-n0. The number of responses in future m 
subjects is random binomial variable (3). Knowing that the posterior distribution of the 
response rate is given by (5), the predictive distribution for the response rate is: 
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Let us assume that the maximum sample size in a study equals n=50. At a given 
timepoint we observed 21 subjects, 10 of which had a response. The current response 
rate equals 𝜋଴=10/21≈0.476. Figure 3 shows the probability of future responses in m 
remaining subjects. As we can see the mass of the probability concentrates around 14. 
The final response rate would then most likely be close to π = (10+14)/50=0.48. 

 
Figure 3:  Posterior predictive distribution of responses in the remaining subjects with beta prior with 

parameters a=0.5 and b=0.5 
Source: own study. 
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The procedure which enables to project the future results based on the current 
responses is built on the following steps defined in (Lee & Liu, 2008): 

1. Find the posterior predictive distribution of future responses. The derivations 
involve the response rate π0 computed for the number of responses r0 and the 
number of subjects n0 observed until given time point. 

2. Calculate the probabilities px x=0,1,…,m of observing any potential number of 
responses x for the remaining m=n-n0 subjects to assess how likely any possible 
future result is.  

3. Assess the probability of observing the pre-specified response rate at each number 
of future responses (for example π > 0.5). This tells us how likely it is to reach the 
endpoint given the number of future responses. The individual probability of 
reaching the response rate is given by the posterior beta distribution (5) at each x. 

4. Identify the number of responses for which the probability of reaching the pre-
specified response rate is greater than pmin (e.g. pmin = 0.9).  

5. Sum the probabilities px > pmin. The sum of these probabilities yields the predictive 
probability p of observing the pre-specified response rate when the maximum 
sample size is reached.  
If the predictive probability is very low p<pL or very high p>pU the decision would 

be to stop the trial respectively for futility or efficacy. The lower bound pL represents the 
probability of an event that is very unlikely whereas pU represents the probability of an 
event which is very likely to be observed.  

An example choice for the probability bounds is pL = 0.1 and pU = 0.9. In the context 
of the response rate assessment for p<pL the chance of reaching the requested response 
given the current results is very unlikely. On the contrary, when p>pU it is highly 
probable that the expected response rate will be reached and therefore we should 
consider extension of the study and moving into the large sample phase. 

Continuing the example of the trial with n=50 subjects and 10 responses in 21 
observed patients, we can calculate the probability of reaching the expected response 
rate 𝜋 at the end of the trial for each number of future responses x.  

Let us assume that the response is expected to occur among more than half of the 
patients. The probability that P(π >0.5|r0, x) is calculated using the cumulative 
distribution function of the posterior beta distribution (5): 
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(8) 

where z represents the probability threshold determined by the expectation for the 
response rate and y0 reflects the characteristics of the process observed at time of the 
interim including r0 and n0. 
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The individual px along with the associated probabilities of reaching the expected 
response rate are shown in Table 1. Given that we observed 21 subjects the future 
number of responses can take a value of x=0,1,…,29, with the total number of subjects 
of n=50. The individual probabilities px are calculated based on (7) whereas 
probabilities P(π >0.5|r0, x) are computed using (8). The table contains also the 
indicator function which takes the value of 1 for each number of responses for which it 
is highly likely that the pre-defined response threshold will be attained when the 
maximum sample size is reached. 

Table 1.  Posterior probabilities for each number of responses in m remaining subjects 

Source: own study. 

The probability of reaching the expected response rate is assessed given the current 
number of responses r0 in n0 subjects. In order to ensure that the goal of the study was 
met we would expect at least 20 responses in future patients. However, the probability 

x px P(π >0.5|r0, x) I(x) 
0 1.816E-05 5.88E-06 0 
1 0.00014 2.35E-05 0 
2 0.0005853 8.42E-05 0 
3 0.0017558 0.000271 0 
4 0.0042212 0.00079 0 
5 0.0086207 0.002095 0 
6 0.0154922 0.005086 0 
7 0.0250717 0.011339 0 
8 0.0371253 0.023309 0 
9 0.0508755 0.044338 0 

10 0.0650539 0.078308 0 
11 0.0780847 0.128848 0 
12 0.088359 0.198193 0 
13 0.094538 0.286031 0 
14 0.0958121 0.38882 0 
15 0.0920547 0.5 0 
16 0.0838356 0.61118 0 
17 0.0722937 0.713969 0 
18 0.058906 0.801807 0 
19 0.0452069 0.871152 0 
20 0.0325269 0.921692 1 
21 0.0218038 0.955662 1 
22 0.0135001 0.976691 1 
23 0.0076305 0.988661 1 
24 0.0038731 0.994914 1 
25 0.0017241 0.997905 1 
26 0.0006494 0.99921 1 
27 0.0001951 0.999729 1 
28 4.181E-05 0.999916 1 
29 4.826E-06 0.999976 1 
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of observing these many success cases in the example setting is low. To be precise, 
the predicted probability of observing more than 50% of responses at the end of the trial 
equals  𝑝 ൌ ∑ 𝐼ሺ𝑥ሻ𝑝௫ ൌ 0.082௫ . If we took the lower bound for the predicted 
probability of pL =0.1, then the conclusion would be to stop the study at the current 
stage for futility as p <  pL.  

3. Empirical evidence – disease control at 12 weeks in patients with 
metastatic prostate cancer 

The Bayesian predictive probability design has been applied to the data collected 
in metastatic prostate cancer clinical trial4. The aim of the trial was to assess the overall 
survival of patients with metastatic prostate cancer on standard and experimental 
combination therapies. 

In order to exemplify the application and assess the usefulness of the Bayesian 
predictive probability design in clinical trial settings the following research problem has 
been undertaken. The purpose of the study is to find the number of patients with disease 
control at 12 weeks. The endpoint of the disease control rate at landmark time is based 
on binary outcome which simplifies the Bayesian settings. This type of endpoint finds 
application in phase II trials (Simon, Geyer, Subramanian & Roychowdhury, 2016, p. 18). 

Disease control is defined as the number of subjects with complete response, partial 
response or stable disease as specified in the response criteria in the clinical study 
protocol for the prostate cancer clinical trial (Project Data Sphere, 2008, pp. CSP, 
p. 49)5. The disease control has been assessed at 12 weeks allowing for 2 week time 
window. 

In our example the interim analyses have been carried out every 10 patients, until 
the maximum sample size has been reached. At each interim analysis the number of 
patients with disease control has been calculated and compared against the Bayesian 
predictive probability bounds, set up for the response rate at 12 weeks of 30% (π=0.3). 
In other words, we want to know what the likelihood of observing at least 30% of disease 
control patients at 12 weeks within all sampled patients is, given the actual data at time t. 

The exercise has been carried out based on the n=203 patients with at least one 
target tumor lesion measurement. Bayesian predictive probability bounds have been 
computed based on the procedure outlined on page 191 using a Beta prior with 
parameters a=0.5 and b=0.5 for the response rate π, and the critical values for the 

                                                           
4  The data are provided by CEO Roundtable on Cancer's Life Sciences Consortium, a free digital library with 

historical patient level data from cancer clinical trials: https://www.projectdatasphere.org/projectdatasphere/ 
html/about, Accessed March 26, 2017. 

5 For overview of the RECIST criteria for efficacy endpoints in oncology, including disease control rate see for 
example: (George, Wang, & Pang, 2016, pp. 7-8). 
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probabilities pL = 0.1 and pU = 0.9. The results are presented in Table 2. In addition, the 
table provides the number of disease control patients along with the disease control rate 
and the dates expressing the recruitment process.  

In the first row of Table 2 we see that the first interim disease control assessment 
was carried out for 10 patients in the study recruited within 11 weeks between 3rd Jan 
2007 and 20th Mar 2007. Four out of ten patients reached disease control at 12 weeks, 
which gave disease control rate of 40% at that time point.  

If we had observed only one patient with disease control at that time, then we would 
have had very low probability of reaching the target π=30% disease control rate in the 
maximum sample size. On the contrary, if we had observed six and more patients with 
disease control, it would have been a strong indication for efficacy. 

A disease control between 2 and 5 would have positioned the investigator in the 
region where there is no strong indication for either of the two decisions. The indication 
of the model is therefore to continue the study because the current data do not provide 
enough statistical evidence about efficacy of the treatment. 

From t=3 and n=30, which was 13 months prior to the enrolment of the last subject 
and until the end of the recruitment, the observed response rate was in the efficacy 
region. The data for 30 patients provided enough statistical evidence within the 
Bayesian design to conclude that the disease control rate at 12 weeks for the maximum 
sample size would be equal to at least 30%. The actual response rate for the maximum 
sample size was 90/203=44%.  

Table 2.  Bayesian predictive probability boundaries with actual disease control assessments at 12 
weeks and recruitment time for each sample in prostate cancer clinical trial  

 Recruitment  
Bayesian predictive probability 

boundaries 
 

Efficacy 
assessments 

Sample 
size at 
time t 

Date first 
subject 

enrolled in 
each sample 

Date last 
subject 

enrolled in 
each 

sample 

Recruit-
ment 

time in 
weeks 

 
Futility 
region 

Continu-
ation 

region 

Efficacy 
region 

 

Number 
of disease 

control 
subjects 

Disease 
control 

rate 

10 2007-01-03 2007-03-20 11  1 2-5 6-10  4 40% 
20 2007-03-26 2007-05-25 8  1-4 5-9 10-20  9 45% 
30 2007-05-31 2007-06-26 4  1-7 8-13 14-30  15 50% 
40 2007-07-02 2007-07-26 3  1-10 11-17 18-40  18 45% 
50 2007-07-30 2007-09-03 5  1-13 14-20 21-50  25 50% 
60 2007-09-05 2007-09-28 3  1-16 17-24 25-60  29 48% 
70 2007-10-01 2007-10-17 2  1-19 20-28 29-70  31 44% 
80 2007-10-23 2007-11-20 4  1-23 24-31 32-80  34 43% 
90 2007-11-22 2007-12-13 3  1-26 27-35 36-90  37 41% 

100 2007-12-14 2008-01-07 4  1-29 30-38 39-100  44 44% 
110 2008-01-08 2008-02-08 4  1-33 34-41 42-110  47 43% 
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Table 3: Bayesian predictive probability boundaries with actual disease control assessments at 12 
weeks and recruitment time for each sample in prostate cancer clinical trial (cont.) 

 Recruitment  
Bayesian predictive probability 

boundaries 
 

Efficacy 
assessments 

Sample 
size at 
time t 

Date first 
subject 

enrolled in 
each sample 

Date last 
subject 

enrolled in 
each 

sample 

Recruit-
ment 

time in 
weeks 

 
Futility 
region 

Continu-
ation 

region 

Efficacy 
region  

Number 
of disease 

control 
subjects 

Disease 
control 

rate 

120 2008-02-14 2008-03-11 4  1-36 37-45 46-120  53 44% 
130 2008-03-14 2008-03-28 2  1-40 41-48 49-130  56 43% 
140 2008-04-04 2008-04-21 3  1-43 44-51 52-140  61 44% 
150 2008-04-24 2008-05-19 4  1-47 48-55 56-150  66 44% 
160 2008-05-20 2008-06-11 3  1-51 52-58 59-160  69 43% 
170 2008-06-11 2008-07-07 4  1-54 55-61 62-170  76 45% 
180 2008-07-08 2008-08-04 4  1-58 59-64 65-180  79 44% 
190 2008-08-06 2008-09-15 6  1-62 63-67 68-190  83 44% 
200 2008-09-16 2008-10-08 3  1-67 68-69 70-200  88 44% 
203 2008-10-10 2008-10-17 1         90 44% 

Source: own study based on (Project Data Sphere, 2008). 

The number of subjects with disease control at the subsequent interim assessments 
from Table 2 has been illustrated in Figure 4.  

  
Figure 4: Disease control rate at week 12 in patients with metastatic prostate cancer and the Bayesian 

predictive boundaries assessed at every 10 patients in the study 
Source: own study based on Table 2. 
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4. Sensitivity analysis – the choice of prior distribution 

As noted earlier the Bayesian analysis allows bringing an external expertise into the 
estimation process. In our example we could look for evidence in the form of response 
rates from previous studies in metastatic prostate cancer. This evidence would serve as 
input for defining the parameters of the prior distribution.  

In the example in Section 2 the target response rate is at least π=0.3 of disease 
control patients. In order to assess the sensitivity of the Bayesian design to the selection 
of prior distribution two extreme scenarios have been applied, additionally to the non-
informative prior from the above example.  

Figure 5 shows the posterior distribution resulting from prior assumption of poor 
performance of the treatment (red solid line for a=1 and b=10). As compared to the non-
informative scenario (orange solid line for a=0.5 and b=0.5) the pessimistic posterior is 
shifted to the left, towards the lower response rate. We would then require a lot more 
evidence in the form of response from the new trial in order to claim efficacy (see Table 
4, first section ‘Low prior response rate’). What is more, we would quicker consider the 
therapy futile, e.g. 3 responses out of 10 would result in futility decision. The opposite can 
be observed for the reverse selection of the prior (see Figure 6), however it must be noted 
that this scenario is far more extreme than the previous pessimistic one, and was applied 
only to provide a full overview over the resulting trial designs. 

 
Figure 5: Beta prior distributions with a=0.5 and b=0.5, and a=1 and b=10 with resulting posterior 

distributions and assumption of empirical response rate of π=70/203≈0.34 
Source: own study. 
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Figure 6 shows the posterior distribution resulting from prior assumption of very 
good performance of the treatment (red solid line). As noted this is an extreme case 
in the sense that we kept the target response rate the same at the level of approximately 
30%. However, the prior would suggest far higher response rates in the former trials. 

The resulting design would drive the efficacy lower boundary to the minimum 
around slightly above 30% (see Table 4, third column ‘High prior response rate’). We 
would relatively quickly consider the trial efficacious, e.g. for 3 responses out of 10 first 
patients.  

Considering the above cases, the choice of the prior distribution is highly affecting 
the decision about the study. This observation is very clear for early stages of the study 
conduct and for low number of patients. Given the range of possible results the 
selection of informative prior for low number of patients would require very strong 
argument. On the other hand, the sensitivity to the choice of the prior distribution is to 
some extent diminishing for larger number of subjects, i.e. for later stages of the trial. 
For example, at the time of having 160 patients the lower efficacy bound is 62/160≈0.39 
for conservative prior and 54/160≈0.34 for optimistic prior. 

 
Figure 6: Beta prior distributions with a=0.5 and b=0.5, and a=10 and b=7 with resulting posterior 

distributions and assumption of empirical response rate of π=70/203≈0.34 
Source: own study. 
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Table 4: Bayesian predictive probability boundaries designed for prostate cancer clinical trial 
according to three types of prior distribution 

Sample 
size at 
time t 

Bayesian predictive 
probability boundaries 

Low prior response rate 
Beta prior 

with a=1 and b=10 

 

Bayesian predictive 
probability boundaries 
Non-informative prior 

Beta prior 
with a=0.5 and b=0.5 

 

Bayesian predictive probability 
boundaries 

High prior response rate 
Beta prior 

with a=10 and b=7 

Futility 
region 

Continu-
ation 

region 

Efficacy 
region 

 
Futility 
region 

Continu-
ation 

region 

Efficacy 
region 

 
Futility 
region 

Continu-
ation 

region 

Efficacy 
region 

10 1-3 4-8 9-10  1 2-5 6-10   1-2 3-10 

20 1-6 7-12 13-20  1-4 5-9 10-20   1-6 7-20 

30 1-9 10-16 17-30  1-7 8-13 14-30  1-2 3-9 10-30 

40 1-12 13-20 21-40  1-10 11-17 18-40  1-5 6-13 14-40 

50 1-16 17-24 25-50  1-13 14-20 21-50  1-8 9-16 17-50 

60 1-19 20-27 28-60  1-16 17-24 25-60  1-11 12-20 21-60 

70 1-22 23-31 32-70  1-19 20-28 29-70  1-15 16-23 24-70 

80 1-25 26-34 35-80  1-23 24-31 32-80  1-18 19-27 28-80 

90 1-29 30-38 39-90  1-26 27-35 36-90  1-21 22-30 31-90 

100 1-32 33-41 42-100  1-29 30-38 39-100  1-25 26-34 35-100 

110 1-36 37-45 46-110  1-33 34-41 42-110  1-28 29-37 38-110 

120 1-39 40-48 49-120  1-36 37-45 46-120  1-32 33-40 41-120 

130 1-43 44-51 52-130  1-40 41-48 49-130  1-35 36-44 45-130 

140 1-46 47-54 55-140  1-43 44-51 52-140  1-39 40-47 48-140 

150 1-50 51-58 59-150  1-47 48-55 56-150  1-42 43-50 51-150 

160 1-54 55-61 62-160  1-51 52-58 59-160  1-46 47-53 54-160 

170 1-57 58-64 65-170  1-54 55-61 62-170  1-50 51-56 57-170 

180 1-61 62-67 68-180  1-58 59-64 65-180  1-53 54-59 60-180 

190 1-65 66-70 71-190  1-62 63-67 68-190  1-57 58-62 63-190 

200 1-70 71-72 73-200  1-67 68-69 70-200  1-62 63-64 65-200 

203               

Source: own study. 

 
An example of the analysis incorporating the prior knowledge from findings 

in previous trials is provided in (Heath, et al., 2020; Chen, et al., 2019).  
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5. Summary 

The theoretical properties of the Bayesian predictive probability design are 
appealing as a tool for detecting the treatment signal at earlier stages of studies with 
continuous recruitment of subjects to the sample. The practical application has shown 
the usefulness of the approach from the perspective of the timing of the decision. This 
goes along with the known argument for adaptive design allowing for reducing the 
overall sample size, cost of the study, drug development time length (George, Wang, 
& Pang, 2016, p. 367). The final decision would still require larger programs in terms 
of the sample size. It that sense the Bayesian design has a supportive role. 

The results are affected by the level of the expected response rate and therefore the 
choice of that parameter is crucial for the analysis and conclusions. When discussing 
the application of Bayesian predictive design, the expected time to response on specific 
endpoint must also be considered (Zhou, Liu, Kim, Herbst, & Lee, 2008). The 
expectation is to use a conservative level of the response rate and refer to the findings 
in other clinical studies with similar indication in order to formulate the response rate 
that would be clinically beneficial. The other question arose in the analysis is how to 
define the appropriate frequency of the assessments in order to draw meaningful 
conclusions in possibly short time period.  

From statistical perspective the interest is also in the choice of prior distribution, 
which affects the expected response rate and, as a consequence, the interim decision. 
The presented example showed the sensitivity of the prior assumption to the resulting 
predictive design. A very careful considerations would be required for the choice of 
informative prior distribution, especially in view of decision making at early stages of 
the recruitment in the trial. From broader perspective, the prior assumptions are vital 
for the trial assessment and it is important to consider how robust the design is 
in translating into phase III trial (Harrington & Parmigiani, 2016, p. 8). 

Moreover, there are many practical problems with predictive design related to the 
conduct of a clinical trial and data collection associated with that process. Firstly, we 
need to decide on the subjects to be reviewed at each stage. Due to practical problems 
related to data collection the enrolment date might not be enough to decide about the 
assignments of the subjects to be included in the interim analysis. There would 
normally be operational reasons for specifying the enrolment stage at which the interim 
is planned (Heath, et al., 2020, p. 3). The practical aspects would have to be taken into 
account within the schedule determined through statistical considerations. 

One can argue that by setting the sample size for early review too low could lead to 
a number of trials inappropriately stopped (Mitchell, 2018, p. 300). Practically, with 
a small number of patients the investigators would refrain from entering a large sample 
phase even with very promising results. 



200                                       A. Korczyński: Bayesian predictive probability design: theory and practical… 

 

 

Lastly, the Bayesian predictive design requires specification of the criteria for 
inclusion in the interim analysis. Especially in cancer clinical trials we may expect 
deviations from the protocol-defined procedures which can bias the final result and 
therefore need to be carefully considered in the analysis. 
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Appendix A 

 
Posterior distribution of the response rate with Beta distribution as prior: 
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